13 research outputs found

    Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    Full text link
    Currently a fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-5 straight section is used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With magnetic field of 72.5 Gauss it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-6 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using two horizontal kickers in the Long-12 section. The STRUCT calculations show that using such horizontal notchers, one can remove up to 99% of the 3-bunch intensity at 400-700 MeV, directing 96% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. The MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.Comment: 4 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012. New Orleans, Louisian

    Tevatron Beam Halo Collimation System: Design, Operational Experience and New Methods

    Full text link
    Collimation of proton and antiproton beams in the Tevatron collider is required to protect CDF and D0 detectors and minimize their background rates, to keep irradiation of superconducting magnets under control, to maintain long-term operational reliability, and to reduce the impact of beam-induced radiation on the environment. In this article we briefly describe the design, practical implementation and performance of the collider collimation system, methods to control transverse and longitudinal beam halo and two novel collimation techniques tested in the Tevatron.Comment: 25 p

    Machine-Related Backgrounds in the SiD Detector at ILC

    Full text link
    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e+ e- interactions are presented in this paper for the SiD detector.Comment: 29 pages, 34 figures, 7 table

    Simulation of the ILC Collimation System using BDSIM, MARS15 and STRUCT

    Get PDF
    The simulation codes BDSIM, MARS15 and STRUCT are used to simulate in detail the collimation section of the International Linear Collider (ILC). A comparative study of the collimation system performance for the 250 x 250 GeV machine is conducted, and the key radiation loads are calculated. Results for the latest ILC designs are presented together with their implications for future design iterations
    corecore